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SUMMARY

An organized effort is presently being conducted by
Future Projects Branch, involving a group of both in-house
and contractor personnel, for the purpose of advancing
the theory of space flight and adaptive guldance, and
developing and improving the techniques of their appli-
cation to present and potential Saturn missions. Status
Report #1 introduced the scientific disciplines involved
and broadly outlined the overall working philosophies of
the group. The present report summarizes and comments
on the results obtained by the group to date in the
involved scientific disciplines of Celestial Mechanics,
Calculus of Variations, Large Computer Exploitation, and
their application.



INTRODUCTION

by
W. E. Miner

The following material presents the efforts of the Future Projects
Branch of the Aeroballistics Division, its contractors, and associates
during the period from March 1962 through November 1962.

Here we do not propose to give the background material for the
studies. Status Report #1 should be read for this background. The
paragraphs which follow in this introduction summarize the work in
the various fields of study.

The first paper by Mirt Davidson on 'Celestial Mechanics" points
up two things. First, Dr. R. F. Arenstorf of the Computation Division
has made significant contribution to the field in his note "Periodic
Solutions of the Restricted Three Body Problem Representing Analytic
Continuation of Keplerian Elliptical Motion." Second, progress has
beéen made both in-house and out-of-house in obtaining insight into
the problems of earth-moon trajectories. In-house, Mirt Davidson
displays a simple geometrical property when considered as a function
of the special initial values. Republic Aviation is continuing work on
the Hamilton-Jacobi approach using the Euler fixed center problem as
a base.

Two approaches have been discarded as having no merit. In the
engineering sense of developing cutoff equations, we are still far
away from solutions and will start work on some empirical procedure
based on special perturbation procedures such as is being developed
by Dr. Hans Sperling.

The paper on '"Calculus of Variations" presents three main areas
of work. The first is that of studies into the transversality conditions
at staging points. The second is that of the development of means
to check the Jacobi conditions (uniqueness of solution) needed for
a sufficiency check on the trajectory. The latter work was done
by Dr. Robert Hunt while he was with us. The last section discusses
some work started in developing procedures for reentry studies.
This process is not in the state of development where it could be
called a true application. It may, in general, be stated that the
studies in calculus of variations are progressing very well,

The work reported on by Nolan Braud in "Large Computer Exploitation"
shows three areas of accomplishment. The first is that of the function




differential generator. It is hoped that this tool will be refined in
order to increase its usefulness. At present we have a tape with

the operation defined and are using it to obtain differentials.

The differefdtials generated are to be used in-house for numerical
methods of defining steering equations. The second item of importance
is the developments toward the use of linear programming in determining
the steering function from empirical data. The potential here is that
of better control of error. The last major accomplishment is that of
developing better means for least squares fits by use of orthonormal
polynomials. This approach allows greater control of the accuracy of
approximation and should alleviate the requirement of using residual
procedures to improve accuracy. The condition for existence of
multivariable least squares approximating polynomials developed by
Northeast Louisiana State College indicates that no check needs to

be made for this condition.

The applications paper presents some of the major areas of work
in the three project sections of our branch. This work is detailed
in reports of the branch and only a review is given here. These
major study areas are: '

1. Studies for Manned Lunar Flight through Lunar Orbital Rendezvous,
2. Lunar Logistics System Studies, and
3. Adaptive Guidance Applications.

Some of the work of Boeing Huntsville is reported. This work
is on coasting periods during the ascent phase.

In conclusion, it may be noted that the weakest area of endeavor
(from the standpoint of results useful in the applications) is that
of celestial mechanics. Notable progress is being made in calculus of
variations and large computer exploitation.
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CELESTTIAL MECHANICS

By

M. C. Davidson

SECTION I. INTRODUCTION

This section gives a brief survey of the progress made,
both in-house and out-of-house, in the field of celestial
mechanics since thepublication of the preceding status.
report (Reference 1). During this time significant advances
have been made, especially in the study of periodic motion.
Here at Marshall Dr. Arenstorf has given an existence proof
for periodic orbits of the second kind, answering a signifi-
cant question which dates back to the nineteenth century.

As a result of a special representation of the solutions of
the restricted three body problem, we are able to infer a
geometrical property. These results and others are to be
discussed in the following sections.

SECTION II. PERIODIC MOTION IN THE
RESTRICTED THREE BODY PROBLEM

A. INTRODUCTORY COMMENTS
Iet the differential equations for the restricted three

body problem in the usual rotating cartesian coordinate system
be written as

}.('.k = fk (X1": X2y X3y X4, F") 2 (k = 1°°-4): (1)

where x, and X, are the position coordinates, Xs and X4 are
the corresponding momenta, and K is the mass ratio, (Reference
4). Since the system (1) is autonomous the conditions for a
solution, xk(t, €, y), to be periodic with period T may be
written as

(2)

Fe (7, & p) =x (75 & u) - € = 0, (k = 1...4),
where € represents the four initial values

Ex = x (£ =0) , (k = 1...4).



In certaln cases a symmetry property in the restricted
problem allows us to reformulate condition (2). It is known
that if an orbit cuts the x; axls orthogonally, then this
orbit i1s symmetrical with respect to the x: axis. If we
take the initial values to be at such a cr0331ng, condition
(2) may be written as

; (3)
X2 (5 s€1s €4, #) =

> (g s E1, E45 “) =0

where £, and €3 are taken to be zero.

Let us now discuss a theorem that allows us under
certain conditions to invert implicit equation such as (2)

and (3).

In our case the implicit function theorem may be stated
as follows: 1let the functions

Fe (15 5 ¥g,0) » (k=1...m),

be holomorphic iﬂ all m+2 variables at the point

P* ={P9§, e s 0 3 y§1+2}

Further, suppose the P¥ is a particular solution to the
system

Fp =0 , (k=1...m).
Then, the functions

Yk = Ik (ym+l: ym+2) s (k = 1'°'m) s

exist as holomorphic functions of the two complex variables
Yms+1 and ypyo in a nelghborhood of the point




* *
= Ip+ls Yms2 >
so long as the Jacobian,

. [3(F, . . . )

# 0

B ,B()h .o -Ym)

where D¥ is evaluated at the point P¥,.

In applying this theorem to either (2) or (3), the
holomorphic conditions are referred to the Cauchy-Poincare’
existence theorem (Reference 6).

The establishing of a particular solution is possible by
use of the Kepler problem, g = 0. In this case, 4 = 0, and
equations (1) are the differential equations for Kepler
motion referred to a rotating coordinate system rotating with
angular speed one. There are two possibilities; first, if
the Kepler mofion is circular in an inertial frame, this
motion referred to the rotating system is also periodic and
symmetric and, hence, is a solution of (2) and of (3); second,
if the inertial motion is a proper ellipse, its period must
be commensurable with 2w to be a solution of (2) and of (3).
From these solutions, provided that one of the possible D¥'s
does not vanish, we may perform the necessary, analytic
continuation producing periodic solutions for small p > O.

If the analytic continuation is started from a circular
solution for u = 0, the periodic solution thus obtained for
£ > O is said to be of the first kind. Similarly, for
elliptic solutions we obtain periodic solutions of the second
kind.

B. PERIODIC SOILUTIONS OF THE FIRST KIND

It isaclassical result that there exist periodic orbits
of the first kind for small g > O so long as the incrtial
period of the original circular solution is not the reciprocal
of a non-zero integer. This proof was given by Poincare’ in
1892 and produces a one parameter family of such orbits.
Poincare’ made the continuation in an isoperiodic manner.
Later continuation was carried out in a isoenergetic manner;
however, this produced the same family.
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Siegel has shown, -(Reference 6), that isoperiodic
solutions of the first kind exist about both masses for
sufficiently large values of the original circular period
and all u in [0, 1]. The Fourier series thus obtained
allows one to construct the inifial values of such orbits.

At present there is no method of constructing these
orbits for all ¢ in [0, 1] and all values of the circular
period not equal to the reciprocal of the non-zero integer.

C. PERIODIC SOLUTIONS OF THE SECOND KIND

The historical background of this problem is large and
is given in Reference 3. It suffices to say that more than
one mathematician of renown, including Poincare’ and
Birkhoff, have published incorrect proofs of their existence.

Here at Marshall Dr. Arenstorf, by the use of suitable
variables, condition (3), and the implicit function theorem
has given a valid proof (Reference 3). He has shown that
for a given k/m, m > O, where k and m are non-zero integers,
and the inertial period of the elliptic motion equals k/m,
that there exists periodic solutions of the second kind
with finitely many exceptions of the eccentricity € for
0 < € < 1.

SECTION IIT. PERTURBATION TECHNIQUES

The formal perturbation method of Hamilton-Jdacobi,
applied to the restricted problem is being pursued by Republic
Aviation. This process is quite lengthy, but does offer some
hope of gaining information about the problem.

The in-house effort based on canonical initial values has
been at least temporarily terminated. The use of the functions
coming from this method to represent solutions to the initial
value problem offered no significant advantage over simpler
fitting techniques; however, the following result has 1its
origin in these studies.

Let the solutions of (1) be written as

X1 (t,ﬁ)

xp (t,
2 (6, 8) = 14 (t,g ’ (p1)

xg (t,€)
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with initial values

m
€2
€s
\E+) ’

Suppose there exists a function w(t, n) and a t¥ > O
such that

z (t, £) =w (t, R(t), £€) , O0S t < t*, (P2)

where w(t, n) satisfies an autonomousdifferential equation,
say

w = g(w)

for arbitrary initial values n. Further, the four by four
matrix R(t) is to satisfy

R(t;) R(tz) = R(t; + t2)

for all t; and t» in the interval [-t¥, t¥*¥]. Then the
following is true (Reference 5).

If z(t, £¢) be the value of z at time t with initial
values ¢, then the values of z(t, R(p) ¢) at time t with
initial values R(p)t 1s R(p)z(t, ¢) for all p and t such
that

ol + o] 5 o

The perturbation method of canonical initial values
(References 2 and 4) gives such a functional relationship
where w(t, n) represents the solution of Euler's problem of
two fixed centers. Here the matrix R(p) is
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("cos p sin p 0 o )
-3in p cos p. o 0

0 o cos p sin g
. O 0 -s3in p cos g

which corresponds to rotating the initlal values through an
angle p. For visualization, let us call in the restricted
problem the mass 1-p, earth and the mass p, moon (g small).
Now assume we have an earth to moon trajectory starting with
initial values, say zg. Then the one parameter family of .
trajectories defined by the one parameter set of 1initial
values R(p) 2z, would spread out accordingly as

z (t, R(p) Zo) = R(p) z (b, Zo)-

On the other hand, suppose we have a moon to earth trajgc-
tory starting with initial values near the moon, say Zo.
Then as before the one parameter set of trajectories is
constructed; however, these would have a focusing effect at
the earth. Figures 1 and 2 of Reference 5 give such trajec-
tories in the restricted problem.

The expansion of the solutions of (1; with respect to
the parameter of mean motion (Reference 1) by the University
of Kentucky has been terminated. The difficulty here is that
only the first term in the series may be integrated in closed
form.




13

REFERENCES

MTP-AERO-62-21, "Status Report #1 on Theory of Space
Flight and Adaptive Guidance," dated March 1, 1962.

MTP-AERO-62-52, "Progress Report #2 on Studies in the
Fields of Space Flight and Guidance Theory," dated
June 26, 1962.

MIN-COMP-62-7, "Periodic Solutions of the Restricted
Three Body Problem Representing Analytic Continuations
of Keplerian Elliptic Motions," dated September 18, 1962,
by Richard F. Arenstorf.

MTP-AERO-61-62, "Reduction of the Restricted Problem of
Three Bodies to a Perturbation of Euler's Problem of
Two Fixed Centers," Dated August 9, 1961, by Mirt C.
Davidson, Jr., and Richard Schulz-Arenstorff.

AIN 33-62, "A Local Geometrical Property of Orbits in
the Restricted Three Body Problem," dated September 27,
1962, by Mirt C. Davidson.

"Vorlesungen Uber Himmelsmechanik," by Dr. Carl Ludwig
Siegel, Springer-Verlag Press, 1956 Edition.



THE CALCULUS OF VARTATIONS

By

Robert Silber and Hugo Ingram

15



17

THE CALCULUS OF VARTIATIONS

By
Robert Silber and Hugo Ingram

SECTION I. INTRODUCTION

Most of what 1s needed as introduction to what is to
follow can be found in the first Status Report in the section
on calculus of variations and the applications of the theory.
However, we shall briefly restate certain of the results
presented there which will serve to put a proper perspective
behind what is to follow.

Recall that the first necessary condition of the classical
theory is the so-called Euler-Lagrange equation. The result
of the application of this equation is a set of second order
differential equations which must be satisfied along any
trajectory which minimizes the considered integral.

There are a few things to be said concerning the first
necessary condition. First, it should be emphasized that
this is not the only known necessary condition. In a
certain vague sense, it is the "largest® in that it in
many cases restricts the field of candidates to those
curves which are solutions to certain differential equations.
Accordingly, if a general solution is available to these
equations, the problem is reduced to the appropriate selection
of the arbitrary constants in this general solution.

However, it is not a priori known that there is a
solution to the minimization; i.e., there is nc guarantee
that some particular solution to the aforementioned differ-
ential -equations actually minimizes the considered integral.
On the other hand, given that there is a solution, it 1s not
evident that there is only one.

The other necessary conditions to the classical theory
are concerned with these questions. 1In addition, they are
sometimes helpful in the appropriate determination of the
arbitrary constants previously mentioned.
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SECTION IT. THE TRANSVERSALITY CONDITION

Recall that the basic problems of the classical theory
are bullt around the minimization (or maximization) of an
integral

Ty
J =f £(t, x, x)dt
tO

by the appropriate selection of the function
x(t) = =x,(t), Xz(t); cees Xp(t)

from a certain defined class of "admissible" functions.

The student of the calculus of variations is frequently
asked for convenience to think of the function x(t) as
describing a curve in (t, x) space and the integral J is
thought of as some property of the admissible curves such
as their lengths. Such an interpretation will be helpful
in discussing the application of the transversality condition.

One of the first problems considered in the calculus of
variations is the minimization of the integral J relative to
curves x(t) which have fixed end points. Such is the case
when finding the curve of minimum length between two fixed
points. 1In this case, one of the properties of the admissible

curves is that they must connect the two points under consid-
eration. Of course, it is not difficult to generalize this
problem to one of variable end points by attempting to find
the curve of minimum length connecting two surfaces. Also,
it is not difficult to see that the solution of the problem
is still a straight line; it is but necessary to find the
appropriate point on each surface to which the end points

of the straight line are to be connected.

It is illuminating to realize that for this problem
the Euler-Lagrange equations dictate that the solution to
the problem shall be a straight line. The general solution
to the differential equations resulting from application of
the FEuler-Lagrange equations 1s the family of all straight
lines. For the fixed end-point problem, we simply determine
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the unique straight line defined by the fixed end-points.
In the variable end-point problem, the task is reduced to
the selection of the shortest line segment connecting a
point of one surface to a point of another.

In general, the Euler-Lagrange equations are applicable
in the variable end-point problem just as in the fixed end-
point problem and yield the same differential equation in
both problems.

In the trajectory analysis with which we are concerned,
the fixed end-point problem would correspond to the stipu-
lation of all position and velocity coordinates at each end
of a given stage. As pointed out in the first status report,
this generally results in a two-point boundary value problem,
and under normal conditions can be expected to determine a
unique solution to the governing differential equations, Jjust
as in the case of two points determining a unique line
segment.

However, this fixed end-point problem generally does not
correspond to the physical problem with which we are confronted.
Rather, our problem is generally one of variable end-points.
For example, as explained in Status Report # 1,-thrust termi-
nation for the uppermost stage is defined by a set of mission
criteria which state necessary and sufficient conditions for
eventual mission fulfillment. There is no reason to expect
that there will generally exist exactly one set of state
variables at thrust termination satisfying these criteria.
(Consi?er, for example, the mission of obtaining a circular
orbit.

We consider, therefore, that the mission criteria
generally define a surface (in phase space) on which the
end-point must lie. The number of degrees of freedom of
this surface will, of course, depend on the mission state-
ment, i.e., on the particular set of mission criterila.

The transversality condition is a condition applicable
in the variable end-point problem. Generally, one obtains
one condition for eaeh degree of freedom on the terminal
surfaces., In effect, then, the transversality condition
will furnish those conditions for selecting the best point
of the terminal surface. In this sense, it is a device for
determining certain of the arbitrary constants of integration
mentioned previously, thereby reducing the problem once again
to a two-point boundary value problem.
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For several stages, the transversality condition 1is
applicable at the points of Junction of successive stages.
This is very important from the standpoint of reducing
the number of independent parameters under consideration,

Dr., Boyce of Vanderbilt University is investigating the
possibility of inferring certaln general relationships
between the undetermined multipliers across stage Jjunctions
by employing the transversality conditlons. The problem

is . that, while the transversality conditions do generally
define the behavior of the multipliers at such points, the
definitive conditions are implicit and further, are dependent
on quantities defined by the solution trajectory. Therefore,
no direct calculation is at present feasible,and 1t 1is
necedsary to increase the order of the isolations assoclated
with the numerical determination of the solution of the
two-point boundary value. Consequently, the only advantage
presently offered by the transversality condition (except

in certain special cases) is to convert the optimization

of the additional parameters encountered in each new stage
to an isolation for their proper (optimized) values,

SECTION III. THE JACOBI CONDITION

Another necessary condition of the theory is the so-
called Jacobi condition. Thls condition is related to the
existence and uniqueness of a minimizing trajectory. The
application of the condition results 1n a certain accessor
minimum problem which i1s an associated problem to which the
Euler-Lagrange equations are again applicable. However,
for this minimization, the application of the Euler-Lagrange
equations results in differential equations of a simple type.
The equations are in fact linear and homogeneous., That thelr
solutions can be numerically investigated is pointed out by
Dr. R. W, Hunt in his report "Utilization of the Accessor
Minimum Problem in Trajectory Analysis," (MTP—AERO—62—74¥.
In effect, for a given supposed minimizing trajectory
determined by solving the two-point boundary value problem
resulting from the Euler-Lagrange equations, the Jacobi
condition can be numerically checked at each time point on
the trajectory. A program for doing this has been developed
by Dr, Hunt and is presently in use.

One of the reasons for the importance of the Jacobl
conditions (in addition to being a necessary condition) is
that, in combination with certain other conditions of the
theory, a condition for sufficiency can be theoretically
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determined. Therefore, the check for the Jacobi condition
actually provides a step forward in being able to make
absolutély certain statements as to the optimality of a
given trajectory. The remaining conditions to be met for
sufficiency are the Legendre (or Weierstrass) condition
and Hilbert's non-singularity condition. It is felt that

these checks can be eventually carried out with no -
difficulties. principal

SECTION IV. AN APPLICATION OF THE PONTRYAGIN PRINCIPLE
TO REENTRY TRAJECTORY OPTIMIZATION

A. INTRODUCTORY REMARKS

The reentry phase of any type of mission which is
designed to return a man to the earth's surface will here
be assumed to start at the altitude above the earth's
surface at which the earth's atmosphere begins to have
a measurable effect upon the flight path of the manned
vehicle. The reentry phase is assumed to have ended when
parachutes or some other type of landing device can be
safely employed.

Some important properties of the reentry flight are
the deceleration history and the range covered. These
quantities depend most strongly on the reentry conditions
and the attitude history of the vehicle. It is desired to
eventually be able to determine the extent of wvariations
in reentry conditions that can be tolerated when optimum
attitude histories are used to obtain satisfactory decel-
erations and range coverage. These "reentry windows" are
needed to determine guidance in previous phases of the
flight profile.

This report covers some first steps in developing decks
to do this. The Pontryagin Maximum Principle is applied in
computing the optimum reentry trajectories, and some infor-
mation on the numerical behavior. of the Pontryagin H function
is obtained. The integral of fotal drag squared that is
extremized here is only one of many possible functions that
may be studied. It is not yet known what function is most
desirable to be extremized physically.
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B. BRIEF DESCRIPTION OF THE PONTRYAGIN PRINCIPLE

Consider the following system of equations:
}.{i - fi(Xl’ LRI Y Xn; ui, LRI ur; t) (i = 1’ e sy n)

where (u,, ..., up) are the control variables and (x4, ..., Xp)
are the state variables. The quantity

n
S=§: ci Xi
i=1

is to be extremized at some time (ty) after the initial
time (to). At to the values for x,, ..., Xp are assumed
to be known. The ci's are arbitrary constants and the
values which they are assigned determine what combinations
of the xi's are extremized at te.

In order to specify further the manner in which

1

S=Z ci xi (tr)

i=1

is to be extremized, the adjoint system of equations 1is
defined:

Introducing the function H = A\4f3 (1 = 1, ..., n) allows the
original system and the adjoint system of equations to be
written in the following form:

] H .
Xy = é—— and Ay = QE—

g v (i =1, ..., n) .
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Now the Pontryagin Principle can be stated in the
following form. If S is to be a minimum at te, it 1s
necessary that the control variables (uh, ooy ur) be
chosen at to and every time thereafter in such a way that
H at each such fixed time is a maximum with respect to
these control variables. If it is desired that S be a
maximum at tg, then H must be a minimum with respect to
U, ..., up at every to < t £ tr. Associated with the
Pontryagin Principle are relations which determine the
initial values for the A;'s in the following three cases.

Case 1 If none of the x,, ..., Xp are desired to have
an assigned value at a fixed te, then S will be
extremized at this te 1if

A1 (bp) = -cg (1 =1, ..., n).

Since ri(tr) is related to Aj(teo) by the A
this relation essentially specifies all n
r(to).

Case 2 If some of the x;, ..., X, are desired to have
an assigned value at a fixed tp, then S will be
extremized and q of the xj's will be specified
at this te if q of the Aj's at t, are chosen so
that q of the xj's at tp have specified values.
Then Xx; = - ¢4 for 1 =q +1, ..., n.

Case 3 If in either of the two previous cases a fixed
te is not specified, then one additional condition
is necessary to define all of the Aj's at t,.
This condition is that H at tr = O.

This formulation of the Pontryagin Principle can be
applied to determining the control variables (uy, ..., ur)
as functions of time so that the quantity S will be maximized
or minimized at the right hand end point. Also, the desired
boundary conditions for the original system of equations will
be satisfied at the right hand end point if the r;'s at t,
are chosen properly.

A correction to Figure 6 on page 42 of Status Report
# 1 may be made here: The last element of the ¢ vector
should be -1, and the condition on P(t) should be omitted.
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C. REENTRY PROBLEM FORMULATION

Figure 1 showssthe geometry of the problem with the
appropriate angles and forces pictured. This geometrical
presentation facllitates the mathematical formulation of
the problem in a two-dimensional cartesian coordlnate
system with origin at the center of a non-rotating spherical
earth, The y-axis of this coordinate system passes through*
a space fixed reference point.

The resisting force of the earth's atmosphere acting
on the vehicle can be broken into two components. One
component gNg acts perpendicular to the long body axis and
the other (X) acts along the long body axls, and are computed
by

P
X=CXA—2—V2

P
N =c¢, A — V2
27 2o

V is the magnitude of the veloclty vector, p the density of
the earth's atmosphere (taken from the 1959 ARDC tablesg,

A the frontal area of the vehicle, and cy and cy are the
aerodynamic coefficients for the vehicle. The coefficients
are assumed to be functions only of the angle (a) between

the long missile axis and the velocity vector for Mach numbers
larger than 2. c¢x.and cy are obtained from wind tunnel data
and theoretical predictions of the effects of a resisting
medium on the vehicle,

Expressing the axial force and the normal force in the
cartesian reference system along with the components of the
gravitational force in the same -system produces the two
components gf the agceleration vector shown in Flgure 1.

If X005 Yo, Xos, and yo are given, these equations can be
integrated numerically to obtain x, y, X, and y as functions
of time if a as a function of time 1s also known. The next

section explains how a as a function of time 1s to be deter-
mined,
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D. APPLICATION OF THE PONTRYAGIN PRINCIPLE

Two new variables (u and v) are introduced into the
problem so that the x and y system of equations can be put
into a form similar to the original system of equations in
Section B.

x1=x=f1=u
X, =y=1%f,=v
Xg = U = f3 =X

In this form the system of equations has four state variables
Xys Xp, Xg, and x,. One other extra variable is now defined.

X, 2 N,2
x5=z=f (=) + (=) | at
te L ™ m
. . X \2 N .2
Then =z =f_ = 29y + (=) .
s s = | () ()

This allows the quantity tobe extremized to be written in
the form
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ty %
(— 2 +-(Ji 2| at.
m

f = - t _—_—f
Therefore, S z (te) A -

o

Now H for this application becomes

H=X T, + Ao fz +ag fg + 2y f4 T As fs

and }.ci =éI__I_, i_i':—-:—H:— (i':l, s ooy 5)
X3

The angle a in f3 through fs has been taken as the control
-variable and must be chosen at ty and every time thereafter
so that H will be a minimum with respect to a at these times.
The minimization of H with respect to a at to < t < tp is
then a requirement for z(tf) to be a minimum., ~Minimizing z
does not necessarily insure that the peak deceleration will
be a minimum, but it does imply that if the peak deceleration
1s large the duration will be short. This is important
because the amount of deceleration that a man can stand
depends both on its magnitude and its duration.

Pigure 2 is an illustration of the behavior of the H
function on an optimum trajectory. H itself is not shown,
for reasons of better showing its variation over a. Thé
function H' that is shown was also used in the computations
for the same reason, and is made up of only the terms in
B that depend on a. H' has its extremums at the same values
of o that H does, but will not remain constant over the
trajectory as H should do. As can be seen from the figure,
three different a's can be chosen at every time which will
produce relative minimums of H' with respect to a at these
times. The same is true for relative maximums of H' with
respect to a. The multiple solutions which occur as the
body is rotated through 360 degrees are due to the shape of
the reentry vehicle assumed. Since the reentry vehicle is
a three-sided body, there are three a's which produce relative
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maxima of H with respect to a at t; < t < tp. TFor this
problem the solution nearest to a zero angle of attack (a)
is always chosen, with the other choices intended for later
study.

The only other information that is needed to numerically
integrate the xi's and the Ai's (i =1, ..., n) is then
initial values for the A's. The statements given in Section B
indicate that Ay, Aps Ag, and A, should be chosen at t, so
that x,, X5, Xz, and x4 at ty will have the desired values.
Since it is also required that S be extremized at tg,

As = - ¢ = 1 at tp. These equations are the necessary
relations which must be satisfied to minimize or maximilze
z at tf while also satisfying some other conditions on the
Xi's at tr.

E. ANALYSIS AND RESULTS

The concepts stated in the previous paragraphs have
been incorporated into a computer program which determines
X, ¥, X, ¥, and a as functions of time such that the inftegral
over time of the square of the total deceleration can -be
either maximized or minimized at tr. As input this program
needs initial values for X, ¥, X, ¥, A1s Aps Ags and x,.

For a sample problem the cutoff conditions of a C-1
reentry test flight were used. At a 120 km altitude the
velocity achieved was 8855 m/sec with a 94 degree path
angle. These cutoff conditions were used to provide the
X, V¥, X, and ¥ as input for the computer program. A
systematic variation of the initial A's was made to observe
the effects these initial A's have on the values of X, ¥,
X, and ¥ at the end of the reentry phase. Figure 3 shows
the type of descent caused by two different sets of initial
A's. The shorter range trajectory has a peak deceleration
of approximately 10 g's while the longer trajectory encounters
only 2 g's.

F. CONCLUSIONS

The preliminary-investigation of the behavior ol the
descent trajectories (for the sample problem) as the initial
A's are varied indicates that initial A's can be found which
provide substantial variations in the range from start to
finish of the reentry phase while maintaining tolerable
deceleration levels. The next step in the problem will be
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a mechanization of the statements presented in Section B
which glve conditions on the initial A's td produce a set

of desired conditions at the lower end of the reentry

phase. Also, the effect of extremizing other functions

of the path will be studied. If a computer program can

be developed to isolate a desired descent path automatically,
then the developed procedures wlll become a useful tool in
investligating different sets of initlal condlitions (x, ¥,

X, and y) and different shapes of reentry vehlcles. By this
means then the mission and accuracy requirements needed in
the development of adaptive guildance for the ascent guidance
can be generated,
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LARGE COMPUTER EXPLOITATION

By
Nolan J. Braud

SECTION I. INTRODUCTION

The first status report lists three major areas of
scientific disciplines which are being investigated to
advance the state-of-the-art in achieving numerical results
of problems in support of Space Flight and Guidance Theory.
These areas are a function differential generator, the
development of a statistical model, and investigations of
multivariant functional models. The purpose of this report
is to briefly indicate the status of development in these
three areas since the publication of the first report.

SECTION II. FUNCTION DIFFERENTIAL GENERATOR

The function differential generator is a computer
program that will differentiate a certain class of algebraic
and transcendental expressions automatically, where the
allowable class of expressions must be closed under differenti-
ation. At the time of the first status report, the University
of North Carolina had developed a working model which had been
successfully employed in generating the coefficients for the
Taylor's Series expressions of the simplified flat-earth
calculus of variations problem. Only first order derivatives
were evaluated; however, since then extension of size limita-
tions and other characteristics were added so that higher
order derivatives could be obtained.

Some of the features which are being incorporated into
the program are:

(1) An increase in the 1limit of length of the input
string to more than twice its original size.

(2) An increase of the limit of length of the string
which may be generated to 4200 alpha-numeric
characters.

(3) The elimination of duplicate values in the matrix
which is to be operated on.

(4) The inclusion of a symbolic differential operator
so that chain differentiation can be accomplished.
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(5) The ability to evaluate derivatives and partial
derivatives.

Upon completion of these modifications the program will
be employed to generate the Taylor's Series of second order.
Then convergence and error properties will be investigated.

SECTION III. STATISTICAL MODEL DEVELOPMENT

The disciplines involved in statistical model develop-
ment are fairly well defined. The procedures are straight-
forward and very little changes in operation were introduced
since the last report. The single major revision was the
incorporation of the "Three Dimensional Optimum Trajectory
Program" by Auburn University (Reference 1). The oblateness
of the earth was later included in these equations and three
dimensional (position wise) statistical models are now being
used., This results in the nature of the steering and cut-
off functions in the path adaptive guidance mode being

XO XO . . 3
}’-‘ [Xo: Yos Zos Xos Yos 20> (F/m)o: toJ

where the "o" subscript refers to instantaneous conditions.

It may be noted that the (m/m)o, term as shown in the first
status report has been dropped from consideration for the
time being, because it cannot presently be determined
accurately enough during the flight of a vehicle.

SECTION IV, MULTIVARTANT FUNCTIONAIL MODELS

The comparison of various multivariant function approxi-
mating procedures is being continued with major emphasis being
devoted to least squares and linear programming techniques.
The least squares methods are still providing the majority of
useful results but the linear programming investigations have
not been carried far enough to come to any conclusive decision
as tTo a preference,

Chrysler Corporation and Northeast Louisiana State College
are devoting their efforts to investigations in the area of
least squares techniques while the University of North Carolina
is investigating linear programming. The efforts of Northeast
have resulted in the development of sufficiency conditions for
the existence of multivariant least squares approximating
functions, whereas the use of orthonormal polynomials is being
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investigated by Chrysler as a means of writing guidance
equations. By the use of orthonormal polynomials, one
gains control of errors introduced by computation pro-
cedures. This 1is brought out by the fact that when normal
equations of excessive length are used in the determination
of least squares coefficients, ill-conditioned or singular
matrices are often encountered. This doesn't happen when
orthonormal polynomials are used. The theory behind this
technique of determining least squares polynomials and an
indication of means to select the "best" set of tabulated
data for use in the numerical approximating procedure is
contained in Reference 2.

North Carolina 1s endeavoring to increase the speed of
convergence of the revised simplex method to the solution
of the dual problem which appears in the linear programming
procedure. The linear programming procedure requires opera-
tion on an expression which is derived from an inequality
condition. The fundamental problem as normally stated is
referred to as the primal problem; however, the problem
can be reformulated when the inequality is reversed, in
which case 1t 1s referred to as the dual. 1In doing this,
advantage is taken of the duality theorem which states in
essence that if the primal problem has a solution then the
dual problem also has a solution.

Normally this pair of problems has constraints which
for one problem equals the number of data points and for
the other problem equals the number of unknown coefficients
in the approximating function. The number of constraints
directly influences the speed of convergence in each problem,
and since the number of data points is much greater than
the number of unknown coefficients, the latter may be the
most economical problem to solve. A formulation of this
nature has been made by the University of North Carolina
and will be evaluated by MSFC.
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APPLICATIONS OF SPACE FLIGHT AND GUIDANCE THEORY

By
D. H. Schmieder

SECTION I. INTRODUCTION

The scientific discipline development with which the
preceding chapters have been chiefly concerned has two
attributes which may be mentioned here. First, the studies
being made in that area are slanted toward gaining an under-
standing of the nature of the problems with which we are
faced, isolating and resolving the difficulties encountered
when known theory and techniques are applied to these problems,
and attempting to extend theory and techniques where most
desirable. Second, the end result that is desired is the
ability to carry out the applications to the Saturn program
that are required of this branch more economically and
rigorously.

The significant results of such development work clearly
cannot be scheduled to coincide with the desires of an appli-
cations program, but the applications program can indicate
where advances would be most beneficial, and it makes some
sense to distribute the scientific discipline development
effort accordingly. The applications are then carried out
with the best theory and techniques available at the time
the applications are required.

The following paragraphs describe some of the applications
that have been initiated since Status Report #1 in Future
Projects Branch. They should serve to illustrate where the
scientific discipline development is or will be used, and part
of what is needed.

SECTION II. DISCUSSIONS
A. LUNAR ORBITAL RENDEZVOUS STUDIES

An application of some extent was that of determining
flight profiles and launch windows for flights to the moon and
back, in connection with a Lunar Orbital Rendezvous feasibility
study. This application was not completed by any means in the
technical sense, but results were obtained on some of the more
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important points and presented to Dr. Shea of Office of Manned
Space Flight on June 7, 1962. Most of the results are being
published as a number of individual studies (References 1 to 5).

The general problem may be described with the help of
Figure 1. A space vehicle of the Saturn class is fo begin its
mission at point 1 with a launch from the latitude of Cape
Canaveral. At point 2 a circular orbit would be obtained, and
at point 3 an injection would be made into a lunar trajectory.
A number of midcourse maneuvers would be possible during the
translunar flight (point 4), followed by a braking phase into
lunar satellite orbit at 5. At point 6 part of the spacecraft
would brake further into a landing trajectory, and would later
launch back off the surface of the moon to rendezvous with the
part that stayed in orbit. The spacecraft would then inject
into a return trajectory, which after possible midcourse maneu-
vers would reenter the earth's atmosphere in such a way as to
be able to safely decelerate by means of aerodynamic drag and
land back on earth. Many practical considerations and physical
effects enter in, such as a safe and instrumented launch azimuth
and return approach; accelerations and aerodynamic heating on
ascent and reentry; radiation belt and solar radiliation in tran-
sit flight; suitability of lunar landing sites and their effect
on choice of lunar orbit; relative motion, spin rates, and
spin orientation of earth and moon as a function of date;
communication and abort possibilities at most points; and
performance and guidance considerations.

A reasonable approximation to the optimum flight profile
for this problem should not be too difficult to determine 1if
analytical solutions to all phases of the flight were available.
However, such solutions are not presently available and repre-
sent some of the aims of the scientific discipline development.
Therefore, numerical approaches must be applied, and due to
the extreme complexity of the problem, various phases must be
treated independently with assumptions that are judged to be
reasonable made on the remaining phases. The midcourse maneu-
ver and the lunar landing phases were not studied by this
branch.

A study of the return leg from lunar satellite orbit to
sultable reentry conditions is reportfed on in Reference 1,
The injection conditions at the moon for landing at either
San Antonio, Texas, or Woomera, Australia was investigated
for various declinations of the moon., The survey was made on
a deck obtained from the Jet Propulsion Laboratory that, within
its computational accuracy, 1is as representative of the true
celestial situation as any known today.
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Another study that was run on the same deck investigated
the outgoing leg from earth to periselenum at various definite
dates when such a lunar mission would be 1likely to be flown.
The twisting effect found in these realistic non-coplanar
lunar trajectories was employed to achieve the smallest
inclination of the lunar arrival conic possible without any
powered "plane changing." Also, some of the principal effects
on the trajectories due to properties of the celestial model
not included in simplified decks were measured. These studies
are reported in Reference 3.

To get some picture of the effect of injection parameters
on periselenum conditions on a somewhat broader scale, a
survey of such trajectories was run on a simplified deck based
on the restricted three body model (earth and moon traveling
in circles about the barycenter, vehicle's mass not affecting
their motion). The relationships between injection parameters
and periselenum conditions that were found numerically are
shown graphically in Reference 2. These results are given in
a moon-earth-plane (MEP) coordinate system. A transformation
of these results to geo-and selenographic coordinates, with
flight planes being measured with respect to lunar and earth's
equators, has been computed for all expected orientations of
the two equatorial planes, and will be published. Also, a
means of determining the actual relationship between these
coordinate systems on any particular date has been published
preliminarily in Aeroballistics Division (Reference 4).

The fact that only numerical representations of fthe earth-
moon transits are presently available makes more difficult
the optimization of the powered injection at earth, and brake
and injection at moon, since part of the end conditions for
these phases are not expressible in equation form. Therefore,
the first studies involving these powered phases have been
made assuming only a certaln energy level and flight plane to
be required at the terminals of the powered phases. It is
felt that fthe corresponding results were a fair approximation,
especially concerning the expenses of plane changes. Some of
the results were given in the presentation to the Office of
Manned Space Flight, NASA Headquarters. More complete results
will be published individually in the future.

Two other possibilities for plane changes have been studied
by Future Projects Branch: during ascent from lift-off to
circular orbit of earth, and during a transfer from one circular
orbit to another of equal or different radius. The orbit to
orbit work has not been completed. Most of tThe results on plane
changing during ascent phase are being expressed in terms of
"launch windows."
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It is probable that the most economical flight profile
for the lunar orbital mission, independent of firing date
and instant, would involve no powered plane changing.
However, for various reasons it is necessary to have an
interval of time on a number of dates when the flight can
begin, making plane changes necessary. These possible
firing intervals, called "launch windows," depend on the
flight profile that is planned. For example, it may be
better due to engineering constraints such as tracking to
launch on a given azimuth, even though the launch window
could be enlarged by having a variable launch azimuth.

Each time there is a non-powered phase in the flight
profile, the launch window question arises for the ignition
of the next powered phase ("ignition window"). Some infor-
mation for most such windows occurring in the LOR mission
was given in the June 7 presentation. A more detailed
study for the ascent phase was completed later, based on
optimum three-dimensional trajectories injecting into a
space fixed circular orbit, and the results were presented
at the ARS Meeting in Los Angeles, California, November 13-18,
1962 (Reference 5%. Results for the injection into the tran-
sit from moon to earth are included in Reference 1.

B. LUNAR LOGISTICS SYSTEMS STUDIES

An applications problem which is very much related to the
LOR problem is that of the Lunar Logistics Systems (rLs).
The mission is to soft-land cargo at a given location on the
moon with a C-5 or C-1B type of vehicle, either directly, or
by first achieving a lunar satellite orbit.

Studies have been made for the earth-moon-transit similar
to those made for LOR, but more extensively. Relationships
between injection and arrival conditions have been computed
and compared on the simplified deck (MEP Coordinates) over
a wide class of lunar arrival conditions. These conditions
range continuously over and beyond the.face of tThe moon,
from retrograde approaches that are suitable for lunar satel-
lite orbit injections, ¢thru lunar impact approaches, to the
probably impractical but instructive direct approaches that
are also available for injecting into lunar satellite orbit.
Effects of using the more exact models of the earth-moon
system and interpretations in geo- and selenographic coordi-
nate systems have also been computed. The results are being
given in special LLS presentations and will appear later in
more detail in the Lunar Flight Study Series of which Volumes
1 to 3 are published, (References 1 to 3). Some representa-
tive trajectories for this problem computed on the JPL deck
have been published (Reference 6).
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The work done for the LOR concerning the propelled flight
phases of agcent to circular oruit, injection into transit,
and braking into lunar satellite orbit 1is equally applicable
to the LLS problem. The work was extended to compare C-5 and
C-1B values for velocity budget and launch windows, and to
give results on the way in which the lunar landing phase
extends the area of the moon achievable by impact type of
approaches, from vertical to horizontal. Plane changes durlng
the braking phagse were elsc ziudiel, both as a possible means
of reaching given landing sifes. and as a necessary means of
approaching given land Lig tes fron a glven direction on any
date. The results of these cidies will be given in a manner
gimilar to that of the translunar work.

[

C. ADAPTIVE GUIDLUCE APFLICALTIONS

in arriving at guldance
‘ iven in the appli-
cations section o0 . (feronce 7). Since the
time of that rcport. : pf the effect of seg-
menting the polynomial aDp“Ole““WOD to an upper stage steering
function for iniectiorn inln clreular orbit has been made.

The time point separatine the two segments was varied, and the
best approximations cbtainable by least squares methods were
compared for xariouu nurbers of terms in the polynomial., Of
course, it 1is i ¢ congider numerically all possibili-
ties for a gi terms, but one approach to making
this debtermin nvesbigated., A description of these
studies and © i be published in report form
soon.

(‘2 f=

functionsg for

The best steering furctions available by these and similar
techniques were computed as a preliminary working set for the
SA-7 application. SA-7 hag an orbital injection mission and
will be the first time the adaptive guldance equations are
actively flown. SA-5 has the same mission and will be guided
by other means, with all adaptive guidance functions being
computed but not followed. This set of guidance functions is
presently being modified to meet certaln hardware requirements.

D. COASTING PERIODS DURING ASCENT PHASE

One possible means of increasing flexibilility in the attain-
ment of strongly range dependent missions, such as rendezvous,
would be to include a ccasting period of variable length at
some variable time during ascent. This problem is being treated
by the Boeing personnel attached to Future Projects Branch under
a general C-5 contract. The mission is taken to be a two~dimen-
sional rendezvous with another vehicle that is already traveling
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in a low circular orbit about the earth. The coast period
is permitted to occur at any time (restart capability
assumed) after the end of first stage. The coasting phase
is constrained to a minimum altifude of 100 km. The optimum
trajectory and coasting parameters are isolated for various
assumed values of the orbit altitude and first stage per-
formance parameters. The corresponding burnout weights
provide information as to launch windows. The results will
be published when suitable portions have been completed.
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